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Abstract. The quantum capacitance, an important parameter in the design of nanoscale devices,
is derived for armchair-edge single-layer graphene nanoribbon with semiconducting property. The
quantum capacitance oscillations are found and these capacitance oscillations originate from the
lateral quantum confinement in graphene nanoribbon. Detailed studies of the capacitance oscilla-
tions demonstrate that the local channel electrostatic potential at the capacitance peak, the height
and the number of the capacitance peak strongly depend on the width, especially a few nanometres,
of the armchair-edge graphene nanoribbon. It implies that the capacitance oscillations observed in
the experiments can be utilized to measure the width of graphene nanoribbon. The results also show
that the capacitance oscillations are not seen when the width is larger than 30 nm.
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1. Introduction

Graphene, which is a hexagonal lattice of a single layer of carbon atoms, has a two-
dimensional (2D) crystal structure. Graphene has recently emerged both as a unique
system for fundamental studies of condensed matter and quantum physics [1] and a fasci-
nating building block for future devices in post-silicon era [2–26]. Graphene ribbons with
nanometre-sized width have been studied extensively [2–6]. Since graphene nanoribbons
are just geometrically terminated single graphite layers, their electronic structures have
been modelled by imposing appropriate boundary condition on Schrödinger’s equation
[7–11]. Graphene can be patterned in nanoribbons by using planar technologies such
as electron beam lithography and etching [2]. An energy gap might be opened when
graphene is patterned into a nanoribbon, and the carriers are confined in a quasi-one-
dimensional (Q1D) system. It is predicted that graphene ribbons with armchair shaped
edges can be either metallic or semiconducting depending on their width [7–11], and that
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graphene nanoribbons with zig-zag shaped edges are metallic with peculiar edge states on
both sides of the ribbon regardless of its width [7–14].

Luryi used the concept of ‘quantum capacitance’ to develop an equivalent circuit model
for devices that incorporate a highly conducting 2D electron gas [27]. This concept has
also been used in modelling one-dimensional (1D) systems [28–30]. Recently, an ana-
lytical formulation of the quantum capacitance in bilayer graphene nanoribbon has been
proposed and quantum size effects on the quantum capacitance have been studied [31]. In
this paper, we study the finite-size effects on the quantum capacitance of armchair-edge
single-layer graphene ribbon and how the finite-size effects affect its oscillations.

2. Theory

The total charge density in a single-layer graphene sheet with a local channel electrostatic
potential Vch, which equals the electron charge density charge minus the hole charge
density, can be written as [29,30]

Q = q
∫ ∞

0
g (E)

[
f

(
E + EG

2
+ qVch

)
−

(
E + EG

2
+ qVch

)]
dE, (1)

where q is the electronic charge, E is the energy, g(E) is the density of states, f (E) is
the Fermi–Dirac distribution function and EG is the band gap.

The semiconducting property of armchair grapheme nanoribbons (GNRs) occurs when
n = 3m or 3m+1, where m is an integer ([8], and references therein). Here, we define n
as the number of the dimmer (two carbon sites) lines for the armchair ribbon. It means
that the armchair-edge ribbon contains n dimmer lines of carbon. The width of the GNR
is proportional to n which is given by the expression

W = (n − 1)

√
3

2
a, (2)

where a = 1.42 Å is the bond length between carbon atoms. The low energy expansion
of the first conduction or valance band for armchair single-layer GNRs is

E = ±3
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where the hopping integral of perfect GNRs t = 2.7 eV and p is the subband index.
The volume of 1D k-space between energy E and E + δE can be obtained as

�V1D(E) = �kx = �E
∂kx

∂ E
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(∂ E/∂kx )

= �E
E

(3/2) at
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Since two electrons of opposite spin require a volume of 2π in phase-space and two val-
leys in the first Brillouin zone, the density of states for the nth subband of such a graphene
nanoribbon can be obtained as

g1D
n (E) = 4E

3πat
√

E2 − E2
p

�(E − Ep), (5)

where Ep = t
√

3
∣∣ pπ

n+1 − 2
3π

∣∣ and �(x)=1 for x ≥ 0 and zero otherwise.
Thus, electron density in the nth subband of such a graphene nanoribbon is

Q1D
n (E) =

∫ ∞

Ep

4E

3πat
√

E2 − E2
p

1

1 + exp ((E − EF)/kBT )
dE . (6)

Hence the total density of states per unit length is the quasi-1D expression for an armchair
single-layer graphene nanoribbon

gQ1D(E) =
+∞∑
p=1

4E

3πat
√

E2 − E2
p

�(E − Ep). (7)

Thus, the number of electrons per unit length in an armchair single-layer graphene
nanoribbon

Qa = q
∑

p
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Therefore, the quantum capacitance for an armchair single-layer graphene nanoribbon
can be obtained as [17],

CQa = ∂ Qa

∂Vch
. (9)

As a comparison, the quantum capacitance of the single-layer graphene nanoribbon
neglecting the edge shape will be given in the fowling part. The density of states of the
single-layer graphene nanoribbon without considering the actual ribbon shape (regardless
of the effect of symmetry of the ribbons on the energy dispersion relation) was given
as [18],

gQ1D
n (E) = 4

π h̄v0

E√
E2 − (En)

2
�(E − En) , (10)

where v0 is the velocity and h̄ is the reduced Planck’s constant. The velocity v0 is inde-
pendent of energy and the predicted value is v0 = 3a0γ0/2h̄ ≈ 106 ms−1. Here γ 0 is
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the interatomic overlap energy, a0 = 1.42 Å is the interatomic spacing and En =
nv0h̄ (π/W ). Thus, the number of electrons per unit length in a graphene nanoribbon
without considering the actual ribbon shape and its quantum capacitance can be written as

Qn = q
∑

n

∫ ∞

En

4E

π h̄v0

�(E − En)√
E2 − (En)

2
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CQn = ∂ Qn

∂Vch
. (12)
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Figure 1. Quantum capacitance as a function of the local channel electrostatic poten-
tial for armchair-edge graphene nanoribbon with (a) n = 3m and (b) n = 3m+1 when
its width is a few nanometres.
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3. Results and discussion

In the following calculations, the temperature is set as 300 K. Figure 1 shows how the
quantum capacitance changes with the local channel electrostatic potential when the width
of the armchair-edge graphene nanoribbon is a few nanometres for n = 3m and 3m+1,
respectively. One can clearly see from this figure that the quantum capacitance oscil-
lations can be found for the armchair-edge graphene nanoribbon with semiconducting
property (n = 3m and 3m+1). The peak height of the capacitance oscillations largely
decreases when the width of the ribbon increases, whereas the peak number of the capac-
itance oscillations increases when the width of the ribbon increases. The increase in
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Figure 2. Quantum capacitance as a function of the local channel electrostatic poten-
tial for armchair-edge graphene nanoribbon with (a) n = 3m and (b) n = 3m+1 when
the width is lager than 10 nm. For comarison, the curve of the quantum capacitance
vs. the local channel electrostatic potential is also given as an inset in this figure.
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Figure 3. The relative deviance in the calculated quantum capacitance when the width
of the nanoribbon changes from 27 nm to 74 nm compared to that when the width is
77.47 nm.

the peak number results from wider armchair-edge graphene nanoribbon leading to more
quantized levels in a given energy range. It also can be noted that the local channel elec-
trostatic potential where the capacitance peak occurs is strongly dependent on the width
of the armchair-edge graphene nanoribbon.

Figure 2 shows how the quantum capacitance changes with the local channel electro-
static potential when the width of the armchair-edge graphene nanoribbon is larger than
10 nm for n = 3m and 3m+1, respectively. The inset of this figure shows the curve
of quantum capacitance vs. the local channel electrostatic potential. One can clearly see
from this figure that there are no obvious quantum capacitance oscillations when the width
of the nanoribbon is larger than 30 nm. It can also be seen that the quantum capacitance
seems to be constant with the width of nanoribbon when the oscillation in the quantum
capacitance is not obvious. Figure 2 also shows that quantum capacitance is constant
when the width of the nanoribbon is large.

Figure 3 demonstrates how the quantum capacitance changes with the width of the
wider armchair-edge graphene nanoribbon. This figure depicts the relative deviance in
quantum capacitance when the width of the nanoribbon changes from 27 nm to 74 nm
compared to that when the width of the nanoribbon is 77.47 nm. The relative deviance
in oscillations originates from the oscillations in the quantum oscillations. This figure
also illustrates that peak height decreases largely with the increasing width for wider
armchair-edge single-layer graphene nanoribbon.

Figure 4 shows the relation between the local channel electrostatic potential where the
first capacitance peak occurs and the width of the nanoribbon. For comparison, the band
gap of armchair-edge graphene nanoribbon as a function of the width of the nanoribbon is
also given in this figure. Such a relation approximately obeys an exponential relation sim-
ilar to the relation between the band gap and the width of the nanoribbon. When the width
of the nanoribbon is less than 10 nm, the local channel electrostatic potential where the
first capacitance peak occurs is very strongly dependent on the width of the nanoribbon.
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Figure 4. The local channel electrostatic potential at the first capacitance peak as a
function of the width of the armchair-edge graphene nanoribbon. For comparison, its
band gap is also given in this figure.

It is also noted that results for the armchair-edge single-layer graphene nanoribbon with
(a) n = 3m and (b) n = 3m+1 obey the same relation. This implies that we can use such
a relation and the capacitance peak observed in the experiments to determine the width of
the armchair-edge single-layer graphene nanoribbon when the width of the nanoribbon is
less than 35 nm.

Figure 5 shows the relation between the height of the first capacitance peak and the
width of the armchair-edge graphene nanoribbon. This relation approximately obeys an
exponential-dependent relation also. It is also noted that the height of the first capacitance
peak for the armchair-edge single-layer graphene nanoribbon with (a) n = 3m and (b) n =
3m+1 obeys the same relation. This implies that this relation can be utilized to determine
the width of the armchair-edge single-layer graphene nanoribbon when the width of the
nanoribbon is less than 30 m in the experiments.
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Figure 5. The first capacitance peak height as a function of the width of the armchair-
edge graphene nanoribbon.
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When we compare ref. [31] with this work, both study the quantum capacitance, but
ref. [31] studies bilayer graphene nanoribbon, our work studies the single-layer graphene
nanoribbon, and thus it has different band structures. Additionally, both works study
the quantum capacitance, but this work focusses on the finite-size effects on height and
position of peaks in the capacitance oscillations whereas the work in ref. [31] does not.

4. Conclusion

In conclusion, the finite-size effects on the capacitance vs. the local channel electro-
static potential curve of an armchair-edge graphene nanoribbon have been theoretically
investigated. The results demonstrate that typical characteristic oscillations can be found
in the curve of the capacitance vs. local channel electrostatic potential for a thinner
armchair-edge single-layer graphene nanoribbon. The finite-size effect (the lateral quan-
tum confinement) leads to the splitting of the band of graphene into subbands. Thus,
the formation of subbbands in one-dimensional graphene nanostructure is the origin of
oscillations in the curve of the capacitance vs. the local channel electrostatic potential.
The number of capacitance peaks at a given range of local channel electrostatic poten-
tial increases when the width of the nanoribbon increases. The quantum capacitance
oscillations for the armchair-edge single-layer graphene nanoribbon with semiconducting
property are remarkable when its width is smaller than 10 nm. The oscillations in the
quantum capacitance are not obvious and quantum capacitance depends weakly on the
width of the nanoribbon when width of the nanoribbon is larger than 30 nm. The local
channel electrostatic potential at the first capacitance peak decreases with the increas-
ing width of the nanoribbon. Such a decrease is especially large when the width of the
nanoribbon is a few nanometres. On the other hand, the height of the first capacitance
peak exponentially decreases approximately with the increasing width of the nanorib-
bon. In short, both decreases can be utilized to measure the width of the armchair-edge
single-layer graphene nanoribbon in experiments.
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